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Recently, we have introduced a new method, metadynamics, which is able to sample rarely occurring transitions
and to reconstruct the free energy as a function of several variables with a controlled accuracy. This method
has been successfully applied in many different fields, ranging from chemistry to biophysics and ligand docking
and from material science to crystal structure prediction. We present an important development that speeds
up metadynamics calculations by orders of magnitude and renders the algorithm much more robust. We use
multiple interacting simulations,walkers, for exploring and reconstructing the same free energy surface. Each
walker contributes to the history-dependent potential that, in metadynamics, is an estimate of the free energy.
We show that the error on the reconstructed free energy does not depend on the number of walkers, leading
to a fully linear scaling algorithm even on inexpensive loosely coupled clusters of PCs. In addition, we show
that the accuracy and stability of the method are much improved by combining it with a weighted histogram
analysis. We check the validity of our new method on a realistic application.

1. Introduction

Computing reactive trajectories and free energy landscapes
associated with rare events in complex polyatomic systems is
of great importance in chemistry, physics, and biophysics. Large
parallel computers and efficient algorithms have allowed
problems of increasing complexity to be tackled. However,
sampling in a reliable way the phase space of systems whose
free energy possesses deep minima separated by large barriers
requires considerable computational efforts. For this reason,
several methods have been proposed to expedite the search for
efficient reactive pathways connecting two free energy minima
and to profile the free energy surface (FES) as a function of
one or more reaction coordinates.1 To name a few, the trajectory
of a rare event can be reconstructed by transition path sampling,2

parallel tempering,3 milestoning,4 conformational flooding5

taboo search,6 local elevation,7 multicanonical molecular dy-
namics (MD),8 force probe MD,9 nudged elastic band,10

eigenvalue following,11 steered MD,12 and methods based on
the minimization of the action.13 On the other hand, the
reconstruction of the FES along given reaction coordinates can
also be accomplished by a variety of means such as thermo-
dynamic integration,14,15 umbrella sampling,16 weighted histo-
gram techniques,17,18Jarzynski’s identity-based methods,19 and
adaptive force bias.20

Recently, we developed a new method,metadynamics, that
encompasses several features of other techniques and provides
in many cases a unified framework for computing FESs and
for accelerating rare events.21 Metadynamics is based on a
dimensional reduction and on a suitable history-dependent

potential. It requires the preliminary identification of a set of
collective variables (CVs)s, which are function of the system
coordinates,x, and are able to describe the activated process of
interest. The dynamics in the space of the chosen CVs is driven
by the free energy of the system and is biased by a history-
dependent potential,FG(s, t), constructed as a sum of Gaussians
centered along the trajectory followed by the collective variables
up to timet. Metadynamics is a dynamics in the space of the
CVs, and we refer to the point that explores that space as a
walker. The method is able optimally to reconstruct the FES
and thus, for viable choices of the CVs, allows all the stable
and metastable states to be identified. Metadynamics was
successfully applied in many different fields, ranging from
chemistry22-26 to biophysics and ligand docking,27,28a,28bmaterial
science,29,30a-c crystal structure prediction,31-33 and systems with
discrete degrees of freedom.34

In ref 35, it was shown that metadynamics is also able to
reconstruct a free energy well of a molecular system within a
predictable accuracy:ε ∝ xS/D, where S is the linear
dimension of the energy basin andD is the effective diffusion
coefficient of the system obtained, e.g., from the typical decay
of the velocity autocorrelation function.36-38 This form of the
error points out that the accuracy of the free energy profile is
low in case of smallD and largeS. Moreover, the filling speed
for fixed accuracy decreases as the inverse of the phase space
volume to be explored,35 thus making accurate reconstruction
in more than three dimensions computationally heavy. Here,
we show that it is possible to enhance the efficiency and the
accuracy of the method by implementing a version of the
algorithm based on multiple interacting walkers. The power of
parallel machines is thus optimally exploited by allowing several
walkers to explore simultaneously the same FES. By extending
the analysis of ref 35, we provide an explicit estimate for the
error and show that the method is strictly linearly scaling in
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the number of walkers. The method is intrinsically parallel and
can be implemented on loosely coupled clusters because the
communication overload, based on the sharing of the walkers’
trajectories, is negligible. This enhanced efficiency will make
the calculation of FESs in high dimensions more accessible. It
is worthy of note that, in the multiple walkers metadynamics
presented here, all the walkers contribute simultaneously to a
single combined reconstruction of the FES. This is substantially
different from that which is suggested in ref 21, where the
parallelism was invoked only to improve the accuracy with
which the force acting on a single walker is calculated.

A substantial speed up of the reconstruction of the FES is
not the only achievement of multiple walkers metadynamics.
Indeed, while in theory, and very often, in practice, it has been
possible to obtain excellent results with a single walker
metadynamics, an important practical problem is to decide when
to stop the run. In fact, there could be two problems. During a
metadynamics run, the relative filling of the basins may oscillate
in time. Moreover continuing the metadynamics runs much after
the first transition is observed carries the risk of pushing the
system outside the basin of interest. This is the case for
biological systems, where continuing the metadynamics run may
induce important conformational changes, e.g., protein unfold-
ing, which may falsify the FES reconstruction. While a partial
solution to these problems was already introduced in ref 28, in
the following, we will show that, by combining multiple walkers
metadynamics with a weighted histogram analysis technique
introduced in ref 34, we are able to solve them and to reconstruct
complex free energy profiles composed of several basins with
complete control of the accuracy.

2. Multiple Walkers Metadynamics

In the analysis performed in this section, we use thedirect
version of metadynamics,35 but extension to other possible
implementations is straightforward. At variance with ordinary
molecular dynamics (MD) simulations, within the metadynamics
framework, the evolution of the walker is not merely controlled
by the Newtonian forces acting on the particles, but is further
influenced by a history-dependent potential,FG, involving the
CVs

whereδsandw are the width and height of the multidimensional
Gaussians,w/τG is the constant rate at which two successive
Gaussians are deposited, andxG(t′) is the trajectory of the
system. Without the additional potential, the system would
explore, in thermal equilibrium, only a limited region of phase
space in the neighborhood of a free energy minimum. A suitable
choice of the Gaussians’ parameters ensures that the history-
dependent potential gradually overcomes the thermodynamic
bias by discouraging the repetitive visit of the same region of
phase space. As time progresses, the system is thus favored to
visit new stable or metastable configurations until, at very long
times, the thermodynamic bias is overcome in the whole (or a
large region of) phase space. When this is accomplished, the
system will visit all regions of phase space with equal probability
andF(s, t), the FES projected ins, can be obtained by simply
changing the sign of the potential given by the accumulated
Gaussians:F(s) ) -FG(s, t f ∞).

In this section, we introduce a multiple walker version of
metadynamics that preserves the same accuracy of the original
algorithm. The working principle is extremely simple: we

imagineNW metadynamics simulations, each with its associated
walker, that simultaneously fill the same free energy well.
FG(s, t) is given by the sum of the Gaussians laid by all the
walkers that otherwise do not interact. Because the level of
required communication between the walkers is very low, it is
easy to implement an almost linear scaling parallel version of
it.

We will also show that the accuracy of the free energy
reconstructed in this manner is independent ofNW. However,
because the speed at which the FES is filled increases linearly
with the number of walkers, it is possible, on a parallel machine,
to reconstruct a free energy in a very short simulation time.

In ref 35, we have shown that, in a metadynamics performed
with a single walker, the free energy obtained from the
accumulated Gaussians,FG, is an unbiased estimator of the true
free energy,F(s). This means that, at any stage of the
metadynamics, the average ofFG over several independent
trajectories will exactly yieldF(s) up to an irrelevant additive
constant,c, throughout the explored range ofs. The accuracy
of the method is thus defined in terms of the standard deviation
ε of each realization ofFG(s) from F(s) at any given point,s.
Except in a region of thickness of orderδs at the boundary of
the explored phase space, this quantity is approximately
independent ofs34 and has been shown to depend on the various
parameters in the system through the following functional form:

whereS is the system size,D the diffusion coefficient,â the
Boltzmann factor,w andδsare the Gaussians' height and width
andCd is a constant that depends weakly on the dimensionality.

We here extend the analysis of ref 35 to the case of several
walkers. In particular, we perform a free energy reconstruction
in a d-dimensional isotropic well of radiusS with a number
NW of walkers, each adding Gaussians of a heightw and width
δs every timeτG. This reference system is chosen because it
allows the expected performance of the algorithm to be
characterized analytically, thus providing valuable insights and
guidelines for the more complicated realistic cases.

As in ref 35, we analyze the behavior of multiple walkers by
studying it in a simplified model. The normal dynamics of the
system is assumed to be of the Langevin form with a diffusion
coefficient D and at an inverse temperature 1/â; such an
assumption has been proved to be representative of a real case
in ref 35. Hence, we have:

with

wheresi is the position of theith walker and

The different walkers feel each other only byFG(s), which
depends on the trajectory of all the replicas, while the evaluation
of the free energy d/dsF (s)|si is performed completely inde-
pendently.

FG(s(x), t) ) w
τG

∫0

t
dt′ exp(-

|s(x) - s(xG(t′))|2

2|δs|2 ) (1)

ε ) x〈(FG(s, t) - F(s) - 〈FG(s, t) - F(s)〉)2〉 = CdxSδs
DτG

w
â

(2)

dsi ) âD( d
ds

(FG(s, t) + F(s))|si
+ êi(t)) dt (3)

〈êi(t)êj(t′)〉 )
δij

Dâ2
δ (t - t′)

FG(s, t) )
w

τG
∑
i)1

NW ∫i)0

t
dt′ exp(-

|s - si(t′)|2

2|δs|2 ) (4)
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We have performed a series of numerical simulations of eq
3 and found that the error is consistent with that predicted by
eq 2 irrespective of the number of walkers. This remarkable
property combined with the minimal amount of communication
needed eventually leads to the almost perfect linear scaling of
the algorithm.

Because the amount of information exchanged between the
walkers is small, two different implementations of the algorithm
are possible. The first uses parallel interfaces (e.g., MPI). The
second uses an external file and can be exploited on heteroge-
neous machines or on a grid computing platform. The latter
implementation is particularly appealing because each run is
completely independent of the others but for the common file
containing the positions of all the added Gaussians. The file is
periodically read from each walker and the position of the new
Gaussian appended to it. Because the file is accessed asynchro-
nously and independently by each walker, the dynamics can be
run on machines of different speeds and a walker can be started
or stopped without interfering with the simulation. This gives
the method stability with respect to failures of one or more
nodes, an event which becomes more probable as the number
of processors increases, as is the present trend in high-end
computers.

Filling a free energy profile with several walkers can
significantly improve the efficiency of the reconstruction on a
parallel machine, but an upper limit to the number of walkers
is imposed by the intrinsic diffusivity properties of the system.
In fact, if the FES is not known a priori, the walkers have to be
initialized, in the worst case scenario in the same position. A
natural choice (though not optimal in terms of algorithmic
efficiency) is to place them at theF(s) minimum identified, e.g.,
through a preliminary traditional MD run. Before the free energy
reconstruction converges, the walkers have to lose memory of
this initial position. To characterize this time, we consider the
diffusive motion of theNW walkers through their mean-square
deviation from the origin of thes space relative to the basin
size:

For a given choice of parameters, the free energy reconstruc-
tion is meaningful only if the adimensional quantity,∆s, has
reached a stationary value of the order of 1, thus guaranteeing
good sampling of the basin of interest. This defines a relaxation
time tREL, which will be a function of the metadynamics
parameters and of the number of walkers. In the appendix, we
provide a heuristic argument, according to which, ifS/δs . 1
and [S2/(τGD)]âwNW(δs/S)d . 1, the relaxation time is given
by

wherecd is a prefactor dependent only on the dimensionality.
To verify this result, we repeated several metadynamics with
the Langevin model eq 3 for different values of the parameters
D,â, S, and ford ) 1, d ) 2, andd ) 3. We also varied the
metadynamics parametersw, τG, δs, and the number of walkers,
NW. As shown in Figure 1b, the mean-square deviation∆s(t)
obtained with all the different choices of parameters collapse if
plotted versus the scaled timet/tREL.

This relaxation time allows an upper bound forNW to be
defined implicitly in terms of the metadynamics parameters. In
fact, a free energy profile of depthF is filled by theNW walkers
in a time that is approximatelytFILL ) (1/NW)τG(F/w)(S/δs)d.
ImposingtFILL/tREL . 1, we have

Remarkably, the maximum number of walkers that could be
used scales exponentially with the dimensionality of the free
energy that has to be reconstructed. We anticipate that this
feature of the algorithm will at the same time allow an accurate
reconstruction of the free energy as a function of several
collective variables, exploiting in an optimal manner the
computing power of big parallel machines.

3. Multiple Walkers Metadynamics on a Real System

In this section, we test the performance of the algorithm on
a real system, showing that the accuracy of the reconstructed
FES does not depend onNW, in agreement with the results
obtained for the model system. Moreover, we show that the
efficiency of the simulation scales linearly withNW.

We considered a tetracationic cyclophane (Cyclobis(paraquat-
p-phenylene)84+) and a 1,5-dihydroxy-naphthalene solvated in
acetonitrile, see Figure 2. For details of the simulations see ref
35. The complex is mainly stabilized byπ-π interactions, and
in its fundamental state, the naphthalene stays inside the
cyclophane ring. In the previous work, we identified the two
CVs that allow a reliable description of the unthreading process.
The distance between the centroids of the cyclophane and the

∆s(t) )
1

Sx 1

NW
∑
i)1

NW

(si(t))
2 (5)

tREL ) cd x Sd+2

|δs|dD
τG

âwNW

Figure 1. (a) Error as a function of the number of walkers for a
spherical welld ) 1, d ) 2, andd ) 3. The metadynamics parameters
are: w ) 1, δs ) 0.3,τG ) 50, S) 4, â ) 1, D ) 0.0005. (b) Scaled
mean-square deviation from the well center (eq 5) as a function of the
scale time t/tREL, with tREL given by eq 6. The metadynamics is
performed ford ) 1, 2, and 3 and for several different choices of the
parameters:w ) 0.1, 0.3, 0.5, and 1;δs ) 0.2, 0.3, and 0.4;τG ) 0,
50, and 100;S) 4 and 8;â ) 0.5, 1, and 2;D ) 0.0003, 0.0005, and
0.0008.

NW , D

S2
τG

âF2

w ( S
δs)d 1

cd
2

(6)
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naphthalenes1 was chosen as the first CV. The second CVs2

is the coordination number of the naphthalene with the atoms
of the acetonitrile, and can be defined as:

where rij is the distance between the two chosen atom types
and r0 ) 4 Å. In the summations overi and j, the hydrogen
atoms are excluded. At variance with the bound state which is
confined, the minimum of the dissociated configuration extends
up tos1 f ∞. Therefore, to limit the region to be explored, we
used a reflective wall that forces the naphthalene to remain close
to the cyclophane, i.e.,s1 to be less than 16 Å, and we consider
as reliable the portion of space withs1 e 14 Å. According to a
bidimensional umbrella sampling calculation, which we consider
as providing the “true” reference FES, the barrier for the
unthreading and the retreating of the naphthalene are about 11
and 3 kcal/mol, respectively, and the saddle point is located at
s1 ) 6 Å ands2 ) 8.5.35 In Figure 2, the FES reconstructed by
the umbrella sampling technique is shown.

To assess the accuracy of the reconstructed FES with the
multiple walkers metadynamics, we performed 10 independent
runs at 300 K and forNW varied between 1 and 32. All the
simulations were started from the same condition in which the
naphthalene is inserted in the cyclophane and stopped when
the unthreading event was observed for one of the walkers.35

The metadynamics parameters areτG ) 3 ps, w ) 0.5 kcal/
mol, δs1 ) 0.3 Å, andδs2 ) 0.3. Therefore, given the diffusion
coefficient matrixD11 ) 15 × 10-5 Å2 fs-1, D22 ) 14 × 10-5

fs-1, andD12 ) 10-5 Å fs-1, and the system sizeS ∼ 7, the
metadynamics error on the FES should beε ∼ 0.6 kcal/mol.

In Figure 3a, we report the error averaged on the final
configurations. It can be appreciated that the average error is
close to the predicted value (dashed line) regardless of the
number of walkers. This shows that eq 2 holds also for multiple
walkers metadynamics, performed on a real system. In Figure
3b, we report the total simulation time (squares) and the time
simulated by each walker (circles), which are necessary before
one walker escapes from the starting well. Notice that the former
is almost constant while the latter decreases as 1/NW, confirming
that the algorithm is intrinsically linear scaling. Clearly, for each
run, the total simulation time is obtained as the sum of the times
simulated by each walker.

4. Free Energy Superposition

The multiple walkers metadynamics is a linear scaling
algorithm that promises a huge reduction in the elapsed time
necessary to reconstruct a FES. In the previous section, we
demonstrated that, if metadynamics is stopped when one of the
walkers overcomes the saddle, the reconstructed free energy
reproduces the real one within the accuracy predicted by eq 2.

However, when one is interested in reconstructing a FES
encompassing multiple wells and barriers, the overall accuracy
becomes a crucial issue because, for complex and slowly
diffusing systems, complete convergence would be achieved
only after an impractically long time.

In ref 28, we suggested that, for the two basin case, to obtain
a correct relative depth of the free energy basins, metadynamics
should be stopped immediately after a recrossing event through
the same reactive pathway, i.e., after the system has overcome
the same saddle point in the reverse direction. This, however,
might provide a poor description of the saddle point region,
and the overall accuracy would be lower than that which can
be achieved with the same set of parameters if we limit our
analysis to the two basins separately because the dimensionS
of the whole free energy basin is significantly larger. Moreover,
if multiple walkers metadynamics is used, the identification of

Figure 2. Top: a schematic representation of the threaded and
unthreaded configurations are reported. For clarity, the solvent mol-
ecules are omitted. Bottom: the FES of the threading process
reconstructed with umbrella sampling and weighted histogram analysis.

s2 ) ∑
i∈naphthalene

j∈solvent

1 - (rij/r0)
8

1 - (rij/r0)
14

Figure 3. (a) Accuracy of the reconstructed FES measured after the
first walker escapes from the threaded state, averaged on 10 independent
simulations, as a function of the number of walkers. The horizontal
line correspond to the accuracy predicted by eq 2. (b) Total simulation
time (squares) and time simulated by each walker (circles), averaged
on 10 independent simulations, as a function of the number of walkers.
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the correct time to stop the simulations becomes even more
problematic. In fact, stopping the reconstruction when the first
walker recrosses the barrier becomes quite an arbitrary criterion
when the number of walkers is very large because recrossing
can occur also for thermal fluctuations. Furthermore, it is not
even possible to identify a clear sequence of crossing events
over the saddle point because at all times walkers will be present
in both basins.

For example, we performed a metadynamics simulation with
NW ) 8, starting from the configuration in which the naphtha-
lene is inside the cyclophane. The accuracy as a function of the
total simulation time is plotted in Figure 4. The two basins are
completely filled after∼6 ns, but even after that time, the
accuracy oscillates between 0.6 and 2. kcal/mol, even if its
average value is∼1 kcal/mol, consistent with the accuracy
predicted by eq 2. This shows that the accuracy of a multibasin
free energy landscape, reconstructed with multiple walkers
metadynamics, depends strongly on the total simulation time
due to the unavoidable difficulties of exploring efficiently the
typically narrow region of phase space joining the filled basins.
In this section, we report an extension of the technique
introduced in ref 34, which leads to a robust estimator for the
FES that is largely insensitive to the time at which the
metadynamics run is stopped. It is worth mentioning that, in
the weighted histogram technique used here and introduced in
ref 34, the error on the free energy is explicitly minimized. This
is at variance with standard WHAM,18 in which the error in
the probability distribution is controlled.

The procedure consists of dividing phase space into sub-
regions, using metadynamics to compute the free energies in
those portions and combining all the information by a suitable
weighted histogram technique to obtain the best possible
estimation of the total FES,Ftot. Because the uncertainty on
the recovered free energy is known for each point in phase space,
we can straightforwardly apply a least-squares approach. By
indicating byFk(s) the available measurements of the free energy
and by ε2

k(s) the corresponding weights, the function to be
minimized can be written as:

whereck are the constants that determine the alignment of the

Fk(s). The least-squares procedure leads to 2 self-consistent
equations forck andFtot,

and

which can be solved iteratively. Notice that, at variance with
other weighted histogram reconstruction techniques, the present
one has a particularly simple formulation because it exploits
the a priori knowledge of the free energy uncertainty.

In the following, we will apply this procedure to determine
the whole FES for the threading/unthreading process of naph-
thalene. We performed a set of multiple walkers metadynamics
simulations,NW ) 8, both consisting of two runs, one starting
from basin A (threaded configuration) and one from basin B
(unthreaded configuration). We applied walls to limit the
accessible FES either to basin A or to basin B. In the two
simulations, the walls were placed only on the first collective
variable and ats1 ) 8 ands1 ) 4, i.e., just beyond the saddle
point so that an overlap region between the two FES exists.
According to eq 2, the accuracy of reconstructed FES isεB ∼
0.6 andεB ∼ 0.8, respectively, if we limit our exploration either
to basin A or to basin B andεAll ∼ 1 if we explore both basins
during the same run, while we assumeε ) ∞ for the regions
that have been left unexplored or poorly visited. The latter
situation is, e.g., encountered in correspondence of the “walls”.
Thus, we achieve

if the simulation is started in the threaded state and

Figure 4. (a) Accuracy as a function of time during the reconstruction of the whole FES surface (s1 < 14) relative to the threading/unthreading
process of the naphthalene. The simulation was carried out with 8 walkers. The black curves correspond to the simulation without the walls; after
∼1 ns, one of the walkers escaped from the starting basin, and after∼6 ns, the first recrossing event was observed. The red curves correspond to
the accuracy computed along the diagonal of panel (b). Inset: we report the overlap between the simulation started in basin A and that started in
basin B. The overlap is defined by binning the portion of the CV's space that is common to the two simulations and counting the fraction of points
in which both the free energies are deeper than 1.5 kcal/mol. (b) Contour plot of the accuracy of the reconstructed FES obtained by combining two
independent simulations withNW ) 8 according to eqs 7, 8, and 9 as a function of the simulation time of the two runsτA andτB. The simulations
were confined either in the threaded state or in the unthreaded state and the weights are defined by eqs 10, 11, 12, and 13.

L ) ∫ ds∑
k

(Ftot(s) - Fk(s) - ck)
2

ε
2
k(s)

(7)

ck ) ∫ ds
(Ftot(s) - Fk(s))

ε
2
k(s)

· 1

∫ ds1/ε2
k(s)

(8)

Ftot(s) ) ∑
k

(Fk(s) + ck)

ε
2
k(s)

‚
1

∑k1/ε2
k(s)

(9)

εA ) 0.6 s1 < S0 (10)

εA ) 0.6
1 - (s1 - S0)

16

1 - (s1 - S0)
8

s1 > S0 (11)
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if the simulation is started in the unthreaded state, whereS0 )
6 Å. In Figure 4a, we report the error as a function of the
simulation time obtained with this procedure. The error after
∼4 ns of simulation is stably equal to 0.6 kcal/mol, in agreement
with eq 2. The best accuracy is obtained as soon as the overlap
betweenFA andFB is complete, see inset Figure 4. In Figure
4b, the error as a function of the two separate simulation times
τA andτB is plotted. Once the overlap is complete, the accuracy
converges to a plateau centered around 0.6 kcal/mol, irrespective
of the value ofτA and τB, confirming the robustness of the
approach. This provides a well-defined criterion to decide when
the metadynamics runs should be stopped, i.e., when the overlap
is complete. This criterion not only ensures good error control
but also avoids the onset of overfilling problems in most
practical cases.

5. Conclusions

In this article, we have introduced a simple yet important
development of metadynamics that makes the method more
robust and allows problems of increasing dimensionality and
complexity to be solved. We introduce multiple replicas of the
system, each with its associated walker. All the replicas depose
Gaussians, simultaneously contributing to the same history-
dependent potential. As in ordinary metadynamics, the sum of
the Gaussians laid by all the walkers provides an unbiased
estimate of the free energy.

For a model system obeying the Langevin dynamics, we
demonstrated that the multiple walkers metadynamics preserves
the properties of the original algorithm. In particular, we showed
that the accuracy on a reconstructed FES is independent of the
number of permitted walkers and that it is still the one derived
in ref 35 for a single walker. However, an upper limit to the
number of walkers is determined only by the diffusion properties
of the system and the simulation parameters. We provide an
explicit expression for that limit and show that the maximum
number of walkers depends exponentially on the dimensionality
of the FES. In practice, this means that, for multidimensional
FES, the speed up that can be achieved depends solely on the
availability of CPU’s.

Because the walkers interact only via the time-dependent
potential, the algorithm is intrinsically linear scaling and node-
crash safe. Therefore, multiple walkers metadynamics can be
implemented in an easy and robust way on loosely coupled
machines and in a grid computing environment.

Because an explicit expression for the error is available, we
are able to combine the method with the weighted histogram
technique introduced in ref 34. The free energy is reconstructed
independently in the different local minima and the global
surface obtained by optimally combining the results. In this
manner, when a sufficient overlap between the partial FES is
achieved, the final accuracy is almost independent of the
simulation time. This solves two issues that made the application
of metadynamics to complex FES difficult, namely the deter-
mination of the optimal time to stop the metadynamics run and
the risk of overfilling some of the basins.

We applied the algorithm to a real system of nanotechno-
logical importance, showing that the accuracy is predicted by
eq 2 and is therefore independent of the number of walkers.

When applied to this system, multiple walkers metadynamics
together with weighted histogram analysis is able to reconstruct
the whole two-dimensional FES for the threading and unthread-
ing process in less than 20 min on 32 2.8 GHz processors with
a controlled accuracy of∼0.6 kcal/mol. This is to be compared
with at least 10 h of clock time needed with ordinary metady-
namics to achieve an accuracy that oscillates between 0.5 and
1.5 kcal/mol (see Figure 4).
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A. Appendix: Relaxation properties of multiple walkers
metadynamics

To understand quantitatively the diffusivity properties of a
set ofNW walkers, we consider the probability distribution for
a single walkerP(s, t) for a multiple walker metadynamics.
P(s, t) satisfies the Fokker-Plank equation

whereFG(s, t) is the history-dependent free energy coming from
the superposition of the Gaussians deposed by all theNW

walkers. Because we are interested in studying the diffusion
properties of metadynamics, and not its ability to reconstruct
F(s, t), we consider the simpler case in whichF(s, t) ) 0, and
the system is confined in a spherical well of radiusS. Hence,
P(s, t) satisfies reflective boundary conditions for|s| ) S. If
NW is large, we can study eq 14 in a mean field approximation,
assuming thatFG(s, t) is determined by the probability distribu-
tion of the walkers att′ < t:

If δs is small enough with respect to the typical variations of
P(s, t), we can approximate the Gaussian with a delta function
times a volume factor (2π)d/2. This gives

By introducing the scaled coordinatesσ ) s/S, the scaled
probability p(σ) ) P(s) det (ds/dσ) ) P(s)Sd, and the scaled
time θ ) tD/S2 eq 14 becomes

with boundary conditions (∂/∂σ)p (σ, θ)||σ|)1. Because we are
interested in the behavior of this equation forNW large, we take
θ ) R-1/2θh. Equation 2 becomes∂p/∂θ ) ∂/∂σ [p(∂/∂σ) ∫0

θh dθh′p
(σ, θh′) + R-1/2(∂p/∂σ)]. For NW large,R . 1 and the diffusive
componentR-1/2∂p/∂σ can be neglected. The evolution equation

εB ) 0.8
1 - (s1 - S0)

16

1 - (s1 - S0)
8

s1 < S0 (12)

εB ) 0.8 s1 > S0 (13)

∂P
∂t

) D
∂

∂s(âP
∂(FG(s, t) + F(s, t))

∂s
+ ∂P

∂s) (14)

FG(s, t) ) NW
w
τG

∫0

t
dt′ ∫ dsP(s′, t′) exp(- |s - s′|2

2|δs|2 )

FG(s, t) = NW
w
τG

|δs|d(2π)d/2∫0

t
dt′P(s, t′)

∂p
∂θ

) ∂

∂σ(p ∂

∂σ
R ∫0

θ
dθ′p(σ, θ′) + ∂p

∂σ)
R ) (2π)d/2 S2

τGD
âwNW(|δs|

S )d
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for p becomes independent ofR. Hence, the typical relaxation
time tREL, in the limit of R large, will be obtained forθh ) Cd,
whereCd is a constant that can depend only on the dimensional-
ity. This gives

wherecd ) Cd/(2π)d/4.
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