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Abstract

The kinesin is a dimeric molecular motor, which processively moves along Q.1

the microtubule in a sequence of 8 nm steps. The stepping dynamics needs to Q.2

be clarified: there are controversial reports about the existence of substructures

in the mechanical step and the step timescale. We present observations of the

kinesin steps in the absence of external forces, measured with subnanometre

precision and microsecond time resolution using a technique which we have

recently introduced and named travelling wave tracking. The data suggest that,

at zero load, the 8 nm step occurs in less than 30 µs and without any long

mechanical substeps.

1. Introduction

The mechanism by which the kinesin–microtubule complex converts the chemical energy Q.3

obtained from the ATP hydrolysis into mechanical work is becoming better and better

understood. The genetic approach, together with an increasing amount of structural

information, has established the relationship between the structure and the function of the

kinesin [1, 2]. Complementarily, single molecule studies have supplied a detailed description

of the kinesin–microtubule dynamics. Conventional kinesin is a dimer of two identical

subunits, composed of two motor heads and a coiled-coil stalk. This two-headed motor

moves processively [3] towards the plus-end of microtubules and can develop forces of a few

piconewtons (stall force ≈ 6–7 pN). The motion is achieved by discrete steps of 8 nm [4–6],

which correspond to the periodicity of the αβ-tubulin arrangement in microtubules.

In order to describe the physical mechanism of the kinesin step, two hypotheses have

been proposed. In a pure mechanical model, a conformational change takes place during the

chemical cycle and propels the trailing head forwards (toward the next binding site) while the

leading head remains tightly attached to the microtubule. An alternative model is based on a

thermal ratchet mechanism: the trailing head unbinds from the microtubule and, by thermal

diffusion, randomly searches for the next binding site. Regimes combining both mechanisms

are also possible.
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To understand this mechanism, it is essential to provide a detailed description of the kinesin

motion, such as the timescale of the step, its shape and any internal substructure [7, 8].

The existence of substructures within the 8 nm step is a controversial point: some works

on the drosophila kinesin (kinesin-1) have reported the existence of mechanical substeps [9, 10]

in the presence of an external load (force > 1 pN). Conversely, other experiments performed

in similar conditions showed that the step happens with no internal structure [11]. Additional

information about the step features in the limit of zero force can help to confirm or infirm the

existence of substeps. Q.4

In order to measure the step details in the absence of external force, we developed a

technique for the tracking of particles with high spatial and temporal resolution: travelling

wave tracking (TWT) [12]. This technique, described in section 2, permits the tracking of

the motion of a kinesin without external manipulation and makes possible the measurements

at zero force. The experiments are carried out in a classical bead assay configuration, with a

200 nm polystyrene particle, coated with kinesin and free to move along the microtubule. The

bead position is recorded with subnanometre precision and a temporal resolution of 2 µs. As

the spatial resolution is limited by the thermal fluctuations of the bead, we average over many

steps in order to improve the signal to noise ratio. We thus can look for any internal structure

within the 8 nm step, and provide bounds on the stepping timescale.

2. Travelling wave tracking

Conventional tracking techniques are based on spatially resolved detectors, and consist in

measuring the light scattered from a relatively small probe, a small bead or fluorescent dye,

moving in a uniformly illuminated field [13]. These techniques use charge-coupled devices

(CCD cameras) or quadrant photodiode detections.

The travelling wave tracking (TWT) technique works in the opposite way: the scattered

light is recorded by a point detector (Avalanche Photodiode—APD), with a broad bandwidth

(∼10 MHz), as the probe moves through a pattern of fringes. The fringes are obtained

by interference of two laser beams with slightly different frequencies such that the pattern

continuously shifts through the sample at constant speed. As a result, the sample is illuminated

by a progressive sinusoidally modulated intensity

I (x, t) ∝ 1 + sin(qx − �t), (1)

where the fringe period d is 2π/q and the pattern shifts with a speed v f ≡ �/q (in our setup

d ≈ 200 nm and � ≈ 4 MHz).

Let us imagine a small particle (a 100 nm polystyrene bead) immobile in the microscope:

it scatters a light intensity proportional to I (x, t) and hence blinks at frequency �. The APD

records the light scattered from the bead, IAPD ∝ 1 + sin(�t + ϕ), where the phase ϕ depends

on the bead position in the fringes. If the bead moves over a distance δx from the position x ′ to

x ′ + δx , the phase shift will change from ϕ′ to ϕ′ + q · δx . In such a way, any displacement of

the bead can be precisely determined, by measuring the phase shift ϕ(t) as a function of time.

In the following we will describe how the travelling fringes have been designed and the way to

measure the phase shift.

The sinusoidal modulation is obtained by interference of two laser beams, with opposite

wavevectors kx , undergoing total internal reflection at the glass/water interface. In this setup,

the fringe periodicity is 197 ± 2 nm. The light, totally reflected at the glass/water interface,

does not penetrate into the sample and its intensity decreases exponentially with a characteristic

penetration depth ζ � 215 nm. Figure 1 shows a schematic view of the experimental setup, as

previously described [12].



Short time investigation of the Neurospora-Kinesin step 3

laser YAG

2nd harm.

z

x
y

L6 (50mm)

objective

specimen

BS1 (50%)

M1
M2

M3

M4

diaphragm

photodiode

ccd camera
L5 (200mm)

L3 (100mm)

L1 (200mm)

L2 (50mm)(160mm)
L4

pc

120cm 4cm

AOM

AOM

(532nm)

BS2

Figure 1. Scheme of the experimental setup. The travelling wave tracking configuration through

the TIRF objective. The laser beam is compressed by means of a telescope (lenses L1 and L2)

and split into two beams (beam splitter BS1) of equal intensity and polarization. The acousto-

optic modulators (AOMs) shift the frequency of the laser beams, which are focused (lens L3) on

the diameter of the back focal plane, in order to illuminate the sample with two parallel beams of

opposite wavevector kx . The scattered light is collected by the lenses L4, L5 and L6 and focused on

the avalanche photodiode and/or on a CCD camera. M1, M2, M3 and M4 are mirrors and BS2 is a

1%–99% beam splitter.

(This figure is in colour only in the electronic version)

In order to obtain a travelling wave, we chose to slightly shift the frequency ω of both laser Q.5

beams by 	ω1 and 	ω2 respectively. The frequency difference � = 	ω1 −	ω2 is set in such

a way that the pattern moves much faster than any probe motion. The resulting intensity on the

specimen can be written as:

I (x, z; t) = | �E1 + �E2|2 = 2E2
0[1 + cos(2kx − �t)]e−z/ζ . (2)

The intensity IAPD, measured by the photodiode, is proportional to I (x, z; t) (equation (2)): the

resulting signal is a sine-like modulation, whose amplitude and phase depend respectively on

the z and the x position of the probe. Both the phase ϕ(t) and the amplitude A(t) are extracted

by using a lock-in amplifier with a 300 kHz bandwidth and they are recorded with a sampling

rate of 625 s−1. The two coordinates x(t) and z(t) are:

x(t) = d

2π
ϕ(t)

z(t) = z0 − ζ ln A(t).
(3)

z0 is unknown, which implies that we do not measure the absolute z position of the probe.

The resolution and the performances of this setup have been characterized using a

piezoelectric stage, which moves a bead stuck to the coverglass by steps of 10 nm. As explained

above, this motion induces a phase shift ϕ(t), which we measure. Figure 2(A) shows how

ϕ(t) (right axis on the plot) evolves as a function of time, proportionally to the bead position

(left axis). The 10 nm displacements are easily observed and the internal structure of the step

can be characterized with nanometre precision. The oscillatory motion after the step is due

to the inertial behaviour of the piezoelectric stage: without any feedback loop, it oscillates

with exponentially damped amplitude after step-like impulses. The intrinsic noise of the

experimental setup can be measured by analysing the parts of the curve where the oscillations

are completely damped (see figure 2, inset). The plot shows that the intrinsic noise is 3 Å RMS;

this noise is white and totally uncorrelated, and it is due the residual shot noise.
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Figure 2. A single colloid

(diameter 200 nm) is fixed on

the coverglass, while the sample

holder is moved in 10 nm

steps by means of a calibrated

piezoelectric stage. Inset: the

residual shot noise limits the

resolution to 3 Å RMS.

3. Methods

Nkin460GST is expressed in BL21 (DE3) E. coli and purified as described in [14, 15].

Preparation of the microtubules. The microtubules are polymerized at a concentration

of 2 mg ml−1 (concentration adjusted with BRB80: 80 mM K-PIPES pH 6.9, 1 mM MgCl2,

1 mM EGTA, 1 mM GTP) and at a temperature of 37 ◦C for 30 min. Then, in order to stop the

polymerization/depolymerization process, taxol is added at a final concentration of 20 µM and

the solution is stored at 37 ◦C for 5 min. Unpolymerized tubulin is removed by centrifugation

at 30 000 RPM, during 15 min at 30 ◦C. The pellet is rinsed and resuspended with BRB80

supplemented with 10 µM taxol) . Q.6

Bead assay. Microtubules are introduced in a flow chamber and incubated for 3 min to

adsorb on a poly-L-lysine-coated coverglass. The chamber is rinsed with BRB80+taxol and

with filtered casein solution (2 mg ml−1) to avoid nonspecific interaction. After a last wash

with BRB80, the kinesin-coated beads are mixed with the motility buffer and injected into the

chamber. Kinesin-coated beads are prepared by mixing a highly diluted preparation of kinesins

and carboxylated latex beads (200 nm diameter; Polysciences cat 07304). After incubating for Q.7

5–10 min, filtered casein at 1 mg ml−1 is added to this mixture. The motility buffer is a BRB80

buffer supplemented with 20 µM ATP, 1 mM phosphocreatine, 50 µg ml−1 creatine phospho-

kinase and an oxygen scavenging system (3 mg ml−1 glucose, 100 µg ml−1 glucose oxidase

and 20 µg ml−1 catalase), 2 mM DTT. The coverslip is sealed with VALAP (vaselin, lanolin, Q.8

paraffin at 1:1:1). Observations are performed at room temperature (approximately 25 ◦C). Q.9

4. Results

When the microtubules are injected into the observation chamber, most of them are partially

aligned by the flow. We take advantage of this effect to roughly line them up, perpendicularly

to the interference fringes. The kinesin-coated beads come randomly in touch with the

microtubules and move along them through the travelling fringes.

In vitro and at saturating ATP concentration ([ATP] = 10 mM) the N-kinesin moves faster

than 2 µm s−1 [16]. In our experiments, the ATP concentration is tuned to slow the kinesin

down to a speed which allows us to easily distinguish the steps. In general we used [ATP]

� 20 µM. The best way to know the number of motors pulling the bead is to measure the

stall force, like in optical tweezers experiments. As in our setup we do not apply any external
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Figure 3. Kinesin-coated bead position

as a function of time. Notice the discon-

tinuities in the position, corresponding

to the kinesin 8 nm steps. The data are

acquired with full bandwidth. Inset: one

single 8 nm step.

force, we cannot use this strategy. In order to get one single enzyme on the bead, we decrease

the kinesin concentration down to the threshold where no events are observed. During the

experiments, the kinesin concentration is set slightly above this threshold. By using an ex situ

optical tweezers setup, we verified that, at this concentration, the stall force never exceeds a

few piconewtons.

Figure 3 shows a record of kinesin motion: the plot shows the displacement (in

nanometres) as a function of time (milliseconds), recorded with full bandwidth. We observe

one of the most peculiar feature of kinesin: the motor moves along the microtubule by steps

of 8 nm, which correspond to the microtubule periodicity. The inset of figure 3 shows a single

8 nm step with full bandwidth (time resolution of 2 µs).

As explained previously, we are interested in characterizing the kinematical features of

the kinesin steps. From figure 3 it appears that the experimental noise is too high, in the full

bandwidth track, to measure the step. In section 2 we have stated that the TWT resolution

allows us to localize a bead stuck to the coverslip with a precision of ±3 Å, which is roughly

15 times lower than the noise measured with the kinesin. The experimental noise is dominated

by the Brownian motion of the bead, which thermally fluctuates around the kinesin position.

These observations raise two questions. First, how is it possible to extract information

from this noise, in order to describe the dynamical properties of the kinesin-bead link. The

second point is to understand how we can extract the kinesin step features from such a noisy

signal. These questions are addressed in the following section.

5. Analysis and discussion

5.1. Thermal fluctuations

In our experiments, we measure the position xb(t) of a tethered bead pulled by a molecular

motor (figure 3). As previously mentioned, the bead is not stiffly attached to the kinesin and

it thermally fluctuates around the kinesin position xm(t). The kinesin–bead link acts as an

attractive potential U(xb − xm), which depends on the distance between the motor and the

bead. Far from the kinesin steps, the energy released during the step by the ATP hydrolysis

is completely dissipated and the fluctuations are only thermally excited (we will see in the

following that the system relaxes with a time constant of τ � 30 µs). At thermal equilibrium,
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Figure 4. Probability distribution of the lat-

eral distance bead–motor xb −xm. The bead–

motor interaction potential is calculated by

using the Boltzmann distribution.

the Boltzmann law gives the probability P(xb − xm) of finding the bead at position xb in the

potential U(xb − xm):

P(xb − xm) ∝ e−U(xb−xm)/kBT . (4)

Within the ergodic hypothesis, the Boltzmann equation allows us to estimate the potential of

the bead–motor linkage:

U(xb − xm) = −kBT ln P(xb − xm) + const. (5)

Experimentally, the probability P(xb − xm) of finding the bead at a certain distance from the

motor position is calculated for 70 plateaus between steps, corresponding to a total acquisition

time of 0.8 s. As xm is not directly measured, we assume that far from the steps the motor does

not move and its position corresponds to the mean position of the bead (xm = 〈xb〉). Figure 4

shows the distribution P(xb − xm) and the corresponding potential (figure 4, inset): we observe

that the bead-motor interaction can be quite well approximated by a harmonic potential:

U(xb − xm) = κx

2
(xb − xm)2. (6)

The continuous line is the best fit between the data and equation (6). This observation is in

contrast with previous results, based on the optical tweezers technique, that pointed out a

nonlinear behaviour of the kinesin–bead linkage when the kinesin tail is strongly elongated.

The discrepancy can be understood if one takes into account the fact that, in our experiments,

the bead explores only the bottom part of the potential, which is accessible by thermal

fluctuations.

All the forces acting on the bead are known and the motion equation of the bead can be

described by the Langevin equation:

ξ ẋb(t) + κx [xb(t) − xm] = η(t) (7)

where ξ is the viscous drag and η(t) the Brownian force. This equation can be analytically

solved and the autocorrelation function �x(τ ) of the bead position xb(t) becomes

�x(τ ) = 〈xb(t)xb(t + τ )〉 = kBT

κx

e−(κx /ξ)τ + �xδ(τ ) (8)

where �x = 2.5 nm2 accounts for the amplitude of the intrinsic, uncorrelated, experimental

noise. This term includes the shot noise and the uncertainty associated to the analogue/digital

conversion of the signal, as well as all the other high frequency noises. The square amplitude of

the thermal fluctuations is inversely proportional to the stiffness κx of the bead–kinesin linkage.

Such thermally excited fluctuations, relax exponentially with a time constant τx = ξ/κx . Q.10
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Figure 5. Position–position autocorrelation function of the bead, corresponding to Brownian

fluctuations: �x (τ ) = 〈x(t)x(t + τ )〉. The continuous line is the best fit according to equation (8).

The autocorrelation function �x(τ ) is extracted from the experimental data and plotted in

figure 5(a); the data (◦) are fitted to equation (8) (continuous line). We first observe that the Q.11

intrinsic noise is small compared to the thermal fluctuations (�x < kBT/κx ). The fit yields

κx = 4.4 × 10−4 N m−1 and τx = 36 µs, where τx is the time needed by the system to

relax to thermodynamical equilibrium. This time depends, of course, on the load and should

be shorter for smaller cargos. For our 200 nm bead, the relaxation time τx appears to be very

short compared to the ATP-ase cycle, which takes at least a few milliseconds. This means that

after each step, the bead–kinesin system has the time to thermalize and the memory of each

step is lost before the next step. Therefore, all the steps can be considered thermodynamically

independent.

From the values of κx and τx we can estimate the local friction ξ = 1.44 × 10−8 N s m−1.

Within the hypothesis that the source of the friction was only the viscous drag of the Q.12

bead, the expected value for a free 200 nm bead moving in the water would be 6πηR =
1.9 × 10−9 N s m−1, i.e. more than seven times smaller than the measured one. Such a high

friction can be understood by taking into account the vicinity of the coverslip. Faucheux et al

[17, 18] demonstrated experimentally that the diffusion coefficient is strongly reduced in a

confined environment. A bead free to move close to a wall diffuses up to three time more slowly

than the same bead in the same fluid. In our case, where the bead is not even free to rotate, the

diffusion coefficient decreases as a logarithmic function of the bead–wall distance [19].

In section 2 we have shown the possibility of tracking the particle simultaneously parallel

and perpendicularly to the substrate, i.e. in this case respectively parallel and perpendicular to

the kinesin motion. In order to characterize the perpendicular zb(t) motion we proceed as for

the xb(t) analysis. The autocorrelation �z follows equation (8) (x being replaced by z) and the

best fit is obtained for κz = 4.3 × 10−4 N m−1 and τz = ξ/κz = 64 µs. This result indicates

that the stiffness of the kinesin–bead bond is essentially the same along the two directions, in

the absence of external forces. In addition, the diffusion coefficient is reduced by a factor of

1.8 in the direction perpendicular to the surface. The coefficient �z (uncorrelated noise) is

larger than kBT/κz (the fit yields �z = 63 nm2 and kBT/κz = 9.5 nm2), which means that the

experimental accuracy is �5 times better in the x direction than along z. This is certainly due

to the absence of lock-in detection along the z-direction: all the low frequency noises (laser

instability and detection noises) are integrated.
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5.2. Kinesin step analysis

As explained in the introduction, the aim of this work is to investigate the kinesin step, in order

to determine the time necessary to move over the eight nanometres and to look for any possible

fine structure of the step. The plot in figure 3 reveals an extremely unfavourable signal/noise

ratio: any step detail is hidden by the noise, whose amplitude is comparable to the step itself.

The extraction of the general features of the step is thus difficult. In the previous section we

have identified in detail the origin of this noise, the main source of which is thermal. The

autocorrelation analysis also indicates that the thermal fluctuations relax with time constant

τx ∼ 36 µs. This suggest a way to extract information about the kinesin step: select a sequence

of N consecutive steps and average them; as the time lapse between steps is �36 µs, the

thermal noise is completely uncorrelated from one step to the next. By averaging N steps, the

noise decreases like 1/
√

N while the signal which adds coherently survives.

This averaging process is meaningful only to the extent that the steps are properly

synchronized. As the step beginning ti is unknown a priori, we first choose a trivial function,

corresponding to the trajectory of the bead subsequent to an instantaneous motor step:

σ̃Fit(t) = aiϑ(t)e−t/τ + ci , (9)

where τ is fixed by time response of the bead, ai is the step size, t̄i is the starting time and ϑ(t)

the Heaviside function. ai and ci are determined by fitting the position of the bead, respectively

after and before the step. Then ti is adjusted, by minimizing the sum
∫

[x(t − ti ) − σ(t)]2 dx (10)

with respect to ti . With this procedure the synchronization uncertainty is

δt = α

√

kBT

κx�2
τ, (11)

where � = 8 nm, and α � 1 and weakly depends on the guess function σ(t). The choice of the

guess function (equation (9)) is motivated by its simplicity. Different guess functions, which

take into account more complex motor trajectory (i.e. the kinesin makes the step at constant

speed or in an exponential manner), give very similar results. In our case δt � 20 µs.

We have averaged the data over 68 chosen among the best experimental sequences Q.13

(figure 6, empty circles, ◦). Data biased because of microtubule misalignment or suspicion

of multiple attachments are discarded. In agreement with previous works, the average step

amplitude is 8.0 ± 0.2 nm. We also observe that the bead approaches the final position in

∼30 µs with an exponential behaviour. This timescale is compatible with the exponential

decay measured in the autocorrelation analysis (figure 5), and corresponds to the relaxation

time response of the bead moving in a viscous environment. Even if the motor moved suddenly,

the bead would follow with this delay, imposed by the local friction and the stiffness of the

kinesin–bead linkage.

We do not observe, at this timescale and within our experimental resolution, any evidence

for substeps, slow conformational change or any other fine structure in the step.

We also see that, in the limit of weak thermal fluctuations (η(t) 
 1), equation (7)

becomes

xm(t) = xb(t) + τx ẋb(t) (12)

where τx is determined by the autocorrelation analysis (equation (8)). Thus, the motor position

xm can be directly deduced from the bead position xb (figure 6, triangles, �).

The experimental data indicate a step time ts � 20 µs, shorter than the thermal fluctuation

timescale. Obviously, the resolution is mainly limited by our synchronization procedure, which
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Figure 6. The average bead position xb (◦) during the 8 nm step: for each step, the starting

positions ti have been determined by a least-square fit to an exponential step. The motor position

xm (�) is deduced from equation (12). This curve shows a rising time shorter than 20 µs.

introduces a broadening of the kinesin step (equation (11)) and, therefore, the kinesin moves

even faster.

Such a short step-time is compatible with a simple free diffusion of the rear kinesin head,

moving over a distance of 16 nm to reach the next binding site. If we consider the kinesin head

like a 5 nm globular object [20] free to diffuse in the water, we can estimate the mean diffusion

time over the next binding site:

t = 	x2

2D
= 6πηR

2kBT
× (16 nm)2 � 1.5 µs. (13)

We have seen in the previous section that the diffusion coefficient of the bead moving close

to the microtubule should be corrected by a factor of 7. If we use the same correction for the

kinesin head diffusion, we estimate an average diffusion time of �10 µs, which is compatible

with the measured value.

Conversely, assuming that 100% of the energy released by the ATP hydrolysis is converted

into mechanical work and totally dissipated by hydrodynamical friction during the step, the

speed time t would be

t = 	x

vm

= 6πηR · (	x)2

EATP→ADP+Pi

� 1 µs. (14)

Of course, this assumption is quite optimistic, and the step time would be longer if only a part

of the energy is directly used to move the trailing head forward. Eventually, this shows that

both pure diffusion of the head and a power stroke mechanism would allow the kinesin to reach

the next binding site more quickly than about 10 µs.

The experimental noise does not allow us to discriminate between different stepping

models, such as smooth gliding of the motor head at constant speed, sudden jump or exponential

approach to the next binding site. Nevertheless, our results supply an upper limit to the step

timescale and definitely exclude any slow conformational change associated to the kinesin

motion at zero force, and they do not indicate any evidence for sub-8 nm steps for Neurospora

kinesin. These results are consistent with those observed under load by Carter et al [11]. They
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are compatible with motion in which all chemical steps happen without detectable motion at

subnanometre resolution and the one involving the chemo-mechanical coupling takes place on

a microsecond timescale (t 
 30 µs).

6. Conclusion

We have presented a study of the fast conformational change of the Neurospora Crassa Q.14

Kinesin. This molecular motor has been investigated using a simple and versatile tracking

technique, travelling wave tracking, which allows us to measure the particle position with the

precision of a few angstroms and a time resolution of 2 µs.

This technique is used to characterize the motion of the Neurospora-Kinesin in a bead

assay, in the absence of external forces. The typical kinesin motion, with discrete 8 nm steps

and relatively long dwell times, is observed. At the same time, the Brownian motion of the bead,

around the kinesin position, is recorded in two dimensions: along and perpendicularly to the

microtubule respectively. The kinesin–bead link is characterized and its stiffness is measured

independently along both directions.

As the thermal fluctuations of the bead hide the short-time details of the steps, the

signal/noise ratio has been improved by averaging many steps: we developed a simple

algorithm to synchronize the steps and average over many events. The final temporal resolution

is mainly limited by the bead response time, which is measured to be 30 µs.

Our results show that the kinesin stepping time is shorter than 30 µs, and that at this

timescale no structure in the step is observed. The experiment results exclude any motion

resulting from a slow conformational change and any mechanical substep longer than 30 µs.
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